viernes, 11 de octubre de 2013

1985. Proyecto Genoma Humano



La biología genética se desarrolla vertiginosamente. En 1985 se lleva adelante el Proyecto Genoma Humano, un programa internacional de colaboración científica cuyo objetivo es obtener un conocimiento básico de la dotación genética humana completa.




Proyecto Genoma Humano
El "Proyecto Genoma Humano" es un programa internacional de colaboración científica cuyo objetivo es obtener un conocimiento básico de la dotación genética humana completa.
Esta información genética se encuentra en todas las células del cuerpo, codificada en el ácido desoxirribonucleico (ADN). El programa pretende identificar todos los genes del núcleo de la célula humana, establecer el lugar que los genes ocupan en los cromosomas del núcleo y determinar mediante secuenciación la información genética codificada por el orden de las subunidades químicas de ADN.
El objetivo último de la representación y secuenciación del genoma es asociar rasgos humanos específicos y enfermedades heredadas con genes situados en lugares precisos de los cromosomas. Cuando se termine, el Proyecto Genoma Humano proporcionará un conocimiento sin precedentes de la organización esencial de los genes y cromosomas humanos. Promete revolucionar el tratamiento y la prevención de numerosas enfermedades humanas, ya que penetrará en los fenómenos bioquímicos básicos que las sustentan.
La idea de iniciar un estudio coordinado del genoma humano surgió de una serie de conferencias científicas celebradas entre 1985 y 1987. El Proyecto Genoma Humano ganó impulso en Estados Unidos en 1990 con la ampliación de la financiación de los Institutos Nacionales de Salud y del Departamento de Energía. Uno de los primeros directores del programa en Estados Unidos fue el bioquímico James Watson, que en 1962 compartió el Premio Nobel de Fisiología y Medicina con los biofísicos británicos Francis Crick y Maurice Wilkins por el descubrimiento de la estructura del ADN.
Muchos países tienen en marcha programas oficiales de investigación sobre el genoma humano como parte de esta colaboración informal, entre ellos Francia, Alemania, Japón, Reino Unido y otros miembros de la Unión Europea. El costo de la parte del programa que se realiza en Estados Unidos es de 3.000 millones de dólares a lo largo de 15 años, hasta el 2005.
El genoma humano
Se llama genoma a la totalidad del material genético de un organismo. El genoma humano tiene entre 50.000 y 100.000 genes distribuidos entre los 23 pares de cromosomas de la célula. Cada cromosoma puede contener más de 250 millones de pares de bases de ADN y se estima que la totalidad del genoma tiene aproximadamente 3.000 millones de pares de bases.
El ADN analizado en el Proyecto Genoma Humano procede por lo general de pequeñas muestras de sangre o de tejidos obtenidas de personas diferentes. Aunque los genes del genoma de cada individuo están formados por secuencias de ADN exclusivas, se estima que la variación media de los genomas de dos personas distintas es muy inferior al 1%. Por tanto, las muestras de ADN humano de distintas fuentes presentan muchas más similitudes que diferencias.
Cartografía y secuenciación
Hay dos categorías principales de técnicas de cartografía genética: ligamiento o cartografía genética, que identifica sólo el orden relativo a los genes a lo largo del cromosoma; y cartografía física, un conjunto de métodos más precisos que permite determinar las distancias entre genes dentro del cromosoma. Ambos tipos de cartografía utilizan marcadores genéticos, que son características físicas o moleculares detectables que se diferencian entre los individuos y se transmiten por herencia.
Los mapas de ligamiento humanos se han elaborado sobre todo siguiendo las pautas de herencia de familias extensas a lo largo de muchas generaciones. Inicialmente, estos estudios se limitaban a los rasgos físicos heredados, fácilmente observables en todos los miembros de la familia. Pero actualmente hay técnicas de laboratorio muy refinadas que permiten a los investigadores crear mapas de ligamiento más detallados comparando la posición de los genes diana en relación con el orden de marcadores genéticos o de segmentos específicos y conocidos del ADN.
La cartografía física determina la distancia real entre puntos diferenciados de los cromosomas. Las técnicas más precisas combinan robótica, uso de láser e informática para medir la distancia entre marcadores genéticos. Para realizar estos mapas se extrae ADN de los cromosomas humanos y se rompe aleatoriamente en numerosos fragmentos. A continuación, éstos se duplican muchas veces en el laboratorio para analizar en las copias idénticas así obtenidas, llamadas clones, la presencia o ausencia de marcas genéticas específicas distintivas. Los clones que comparten varias marcas proceden por lo general de segmentos solapados del cromosoma. Las regiones de solapamiento de los clones pueden a continuación compararse para determinar el orden global de las marcas a lo largo del cromosoma y la secuencia exacta que ocupan inicialmente los segmentos de ADN clonados.
Para determinar la secuencia real de nucleótidos hacen falta mapas físicos muy detallados que recojan el orden exacto de las piezas clonadas del cromosoma. En el Proyecto Genoma Humano se utiliza primordialmente un método de secuenciación desarrollado por el bioquímico británico y dos veces premio Nobel, Frederick Sanger. Este método consiste en replicar piezas específicas de ADN y modificarlas de modo que terminen en una forma fluorescente de uno de los cuatro nucleótidos. En los modernos secuenciadores automáticos de ADN, el nucleótido modificado situado al extremo de una de estas cadenas se detecta con un haz de láser y se determina el número exacto de nucleótidos de la cadena. A continuación se combina esta información en un ordenador para reconstruir la secuencia de pares de bases de la molécula original de ADN.
Duplicar el ADN con precisión y rápidamente tiene una importancia crítica, tanto para la cartografía como para la secuenciación. Inicialmente los fragmentos de ADN humano se replicaban mediante clonación en organismos unicelulares que se dividen rápidamente, como bacterias o levaduras. Esta técnica exige mucho tiempo y mucho trabajo. A finales de la década de 1980 se generalizó el uso de un método revolucionario de reproducción de ADN llamado reacción en cadena de polimerasa (RCP). Esta técnica es fácil de automatizar y puede copiar una sola molécula de ADN varios millones de veces en unas pocas horas. En 1993, el bioquímico estadounidense Kary Mullis recibió el Premio Nobel de Química por idear esta técnica.
Bioinformática
Cuando esté terminado, el Proyecto Genoma Humano habrá generado un catálogo con la descripción de 50.000 a 100.000 genes humanos con cierto grado de detalle, mapas de alta resolución de los cromosomas, incluidos cientos de miles de puntos significativos, y miles de millones de información sobre secuencias de pares de bases. Para ayudar a los investigadores del genoma a determinar el sentido de este aluvión de datos hacen falta muchos instrumentos informáticos, como sistemas de información y gestión de laboratorios, robots, sistemas de gestión de bases de datos e interfaces de usuario gráficas.
Se ha desarrollado un nuevo campo de investigación llamado bioinformática para satisfacer las exigencias planteadas por el programa. Los investigadores de bioinformática han creado bases de datos públicas conectadas a Internet para poner los datos del genoma a disposición de los científicos de todo el mundo. Así, los resultados de la cartografía de los genes humanos se encuentran en la Genome Database, y la información de secuenciación del ADN en varias bases de datos, entre ellas GenBank del NIH, Base de Datos de Secuencias de Nucleóticos del Laboratorio Europeo de Biología Molecular, DNA Databank de Japón y Genome Sequence Database del DOE.
Situación del proyecto
A principios de 1996, el Proyecto Genoma Humano iba ya por delante del calendario y por detrás del presupuesto. Se han cartografiado más de 4.000 genes al menos en un cromosoma específico, se han clonado 1.600 genes de función conocida, se han asociado 1.000 enfermedades genéticas con algún defecto de un gen cartografiado y se han secuenciado más de 150 millones de pares de bases de ADN humano. Se han publicado mapas de todo el genoma humano con marcas separadas por término medio cerca de 200.000 pares de bases. El objeto final del Proyecto Genoma Humano es estrechar la separación entre marcas hasta aproximadamente 100.000 pares de bases y secuenciar al menos 3.000 millones de pares de bases para el año 2005 (año en que se completó el anñalisis del genoma).
En años recientes se han identificado los genes asociados con enfermedades hereditarias, como la fibrosis quística, la distrofia muscular o la enfermedad de Huntington. Éste es el primer paso en el desarrollo de mejores pruebas de selección genética, nuevos medicamentos y tratamientos genéticos para combatir estas patologías. La capacidad para corregir defectos mortales de la herencia genética humana puede alterar espectacularmente la forma de enfocar la enfermedad.
El mayor conocimiento del genoma humano puede tener también consecuencias éticas, jurídicas y sociales muy controvertidas. Los primeros resultados ya han estimulado un debate internacional sobre la conveniencia o no de patentar para uso comercial secuencias de genes humanos y de poner la información sobre genética humana a disposición de empresas de seguros y empleadores, así como de corregir los defectos genéticos de forma que podrían transmitirse de generación en generación.

No hay comentarios:

Publicar un comentario

Si te gusta el fútbol, entrá aquí: