lunes, 8 de julio de 2013

1960. Invención del rayo láser



1960. Se inventaron los rayos láser de luz coherente superconcentrada, capaces de recorrer grandes distancias sin dispersarse. El láser se convertirá en una herramienta valiosa en la industria, la investigación científica, la tecnología militar y el arte.
 

Una nueva revolución tecnológica: los rayos láser
Los láseres son aparatos que amplifican la luz y producen haces de luz coherente; su frecuencia va desde el infrarrojo hasta los rayos X.
Un haz de luz es coherente cuando sus ondas, o fotones, se propagan de forma acompasada. Esto hace que la luz láser pueda ser extremadamente intensa, muy direccional, y con una gran pureza de color.
Principios de funcionamiento
Los láseres obligan a los átomos a almacenar luz y emitirla en forma coherente.
Primero, los electrones de los átomos del láser son bombeados hasta un estado excitado por una fuente de energía. Después, se los ‘estimula’ mediante fotones externos para que emitan la energía almacenada en forma de fotones, mediante un proceso conocido como emisión estimulada. Los fotones emitidos tienen una frecuencia que depende de los átomos en cuestión y se desplazan en fase con los fotones que los estimulan. Los fotones emitidos chocan a su vez con otros átomos excitados y liberan nuevos fotones. 
La luz se amplifica a medida que los fotones se desplazan hacia atrás y hacia adelante entre dos espejos paralelos desencadenando nuevas emisiones estimuladas. Al mismo tiempo, la luz láser, intensa, direccional y monocromática, se ‘filtra’ por uno de los espejos, que es sólo parcialmente reflectante.
La emisión estimulada, el proceso en que se basa el láser, fue descrita por primera vez por Albert Einstein en 1917.
En 1958, los físicos estadounidenses Arthur Schawlow y Charles Hard Townes describieron a grandes rasgos los principios de funcionamiento del láser en su solicitud de patente. Obtuvieron la patente, pero posteriormente fue impugnada por el físico e ingeniero estadounidense Gordon Gould. En 1960, el físico estadounidense Theodore Maiman observó el primer proceso láser en un cristal de rubí. Un año más tarde, el físico estadounidense nacido en Irán Ali Javan construyó un láser de helio-neón.
En 1966, el físico estadounidense Peter Sorokin construyó un láser de líquido. En 1977, el Tribunal de Patentes de Estados Unidos confirmó una de las reivindicaciones de Gould en relación con los principios de funcionamiento del láser.
Aplicaciones del láser
Los posibles usos del láser son casi ilimitados.
El láser se ha convertido en una herramienta valiosa en la industria, la investigación científica, la tecnología militar o el arte.
Industria
Es posible enfocar sobre un punto pequeño un haz de láser potente, con lo que se logra una enorme densidad de energía. Los haces enfocados pueden calentar, fundir o vaporizar materiales de forma precisa. Por ejemplo, los láseres se usan para taladrar diamantes, modelar máquinas herramientas, recortar componentes microelectrónicos, calentar chips semiconductores, cortar patrones de moda, sintetizar nuevos materiales o intentar inducir la fusión nuclear controlada. El potente y breve pulso producido por un láser también hace posibles fotografías de alta velocidad con un tiempo de exposición de algunas billonésimas de segundo. En la construcción de carreteras y edificios se utilizan láseres para alinear las estructuras.
Investigación científica
Los láseres se emplean para detectar los movimientos de la corteza terrestre y para efectuar medidas geodésicas. También son los detectores más eficaces de ciertos tipos de contaminación atmosférica. Los láseres se han empleado igualmente para determinar con precisión la distancia entre la Tierra y la Luna y en experimentos de relatividad. Actualmente se desarrollan conmutadores muy rápidos activados por láser para su uso en aceleradores de partículas, y se han diseñado técnicas que emplean haces de láser para atrapar un número reducido de átomos en un vacío con el fin de estudiar sus espectros con una precisión muy elevada.
Como la luz del láser es muy direccional y monocromática, resulta fácil detectar cantidades muy pequeñas de luz dispersa o modificaciones en la frecuencia provocadas por materia. Midiendo estos cambios, los científicos han conseguido estudiar las estructuras moleculares.
Los láseres han hecho que se pueda determinar la velocidad de la luz con una precisión sin precedentes; también permiten inducir reacciones químicas de forma selectiva y detectar la existencia de trazas de sustancias en una muestra.
Comunicaciones
La luz de un láser puede viajar largas distancias por el espacio exterior con una pequeña reducción de la intensidad de la señal. Debido a su alta frecuencia, la luz láser puede transportar, por ejemplo, 1.000 veces más canales de televisión de lo que transportan las microondas. Por ello, los láseres resultan ideales para las comunicaciones espaciales.
Se han desarrollado fibras ópticas de baja pérdida que transmiten luz láser para la comunicación terrestre, en sistemas telefónicos y redes de computadoras. También se han empleado técnicas láser para registrar información con una densidad muy alta. Por ejemplo, la luz láser simplifica el registro de un holograma, a partir del cual puede reconstruirse una imagen tridimensional mediante un rayo láser.
Medicina
Con haces intensos y estrechos de luz láser es posible cortar y cauterizar ciertos tejidos en una fracción de segundo sin dañar al tejido sano circundante. El láser se ha empleado para ‘soldar’ la retina, perforar el cráneo, reparar lesiones y cauterizar vasos sanguíneos. También se han desarrollado técnicas láser para realizar pruebas de laboratorio en muestras biológicas pequeñas.
Tecnología militar
Los sistemas de guiado por láser para misiles, aviones y satélites son muy comunes. La capacidad de los láseres de colorante sintonizables para excitar de forma selectiva un átomo o molécula puede llevar a métodos más eficientes para la separación de isótopos en la fabricación de armas nucleares.
Medidas de seguridad
El principal peligro al trabajar con láseres es el daño ocular, ya que el ojo concentra la luz láser igual que cualquier otro tipo de luz. Por eso, el haz del láser no debe incidir sobre los ojos directamente ni por reflexión. Un láser debe ser manejado por personal experto equipado con gafas o anteojos de seguridad.

El holograma (en griego, holos, 'todo'; gram, 'mensaje') es un método de obtener imágenes fotográficas tridimensionales. Las imágenes se crean sin lente alguna, por lo que esta técnica también se denomina fotografía sin lente.
Los principios teóricos de la holografía fueron desarrollados por el físico británico de origen húngaro Dennis Gabor en 1947. La primera producción real de hologramas tuvo lugar a principios de los años sesenta una vez disponible el láser.
Un holograma se diferencia básicamente de una fotografía normal en que no sólo registra la distribución de intensidades de la luz reflejada, sino también la de fases. Es decir, la película es capaz de distinguir entre las ondas que inciden en la superficie fotosensible hallándose en su amplitud máxima, de aquellas que lo hacen con amplitud mínima. Esta capacidad para diferenciar ondas con fases distintas se logra interfiriendo un haz de referencia con las ondas reflejadas.
El efecto tridimensional se consigue porque el holograma reconstruye en el espacio los frentes de onda que originalmente fueron creados por el objeto.



No hay comentarios:

Publicar un comentario

Si te gusta el fútbol, entrá aquí: